冒泡排序
效率:O(n2)
原理:
-
比较相邻的元素,如果第一个比第二个大,就交换他们两个;
-
对每一对相邻元素做同样的工作,从开始第一对到结尾的最后一对。做完以后,最后的元素会是最大的数,这里可以理解为走了一趟;
-
针对所有的元素重复以上的步骤,除了最后一个;
-
持续每次对越来越少的元素重复上面的步骤,直到没有任何一对数字需要比较,最后数列就是从大到小依次排列;
def bubble_sort(data): """ 冒泡排序 :param data: :return: """ for i in range(len(data)-1): # 趟数 for j in range(len(data)-i-1): # 遍历数据,依次交换 if data[j]>data[j+1]: # 当较大数在前面 data[j],data[j+1]=data[j+1],data[j] #交换两个数的位置if __name__=='__main__': import random data_list=list(range(30)) random.shuffle(data_list) print("pre:",data_list) bubble_sort(data_list) print("after:",data_list)#结果:#pre: [22, 11, 19, 16, 12, 18, 20, 28, 27, 4, 21, 10, 9, 7, 1, 6, 5, 29, 8, 0, 17, 26, 13, 14, 15, 24, 25, 23, 3, 2]#after: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29]
选择排序
效率:O(n2)
原理:
-
每一次从待排序的列表中选出一个元素,并将其与其他数依次比较,若列表中的某个数比选中的数小,则交换位置,把所有数比较完毕,则会选出最小的数,将其放在最左边(这一过程称为一趟);
-
重复以上步骤,直到全部待排序的数据元素排完;
def select_sort(data): """ 选择排序 :param data: 待排序的数据列表 :return: """ for i in range(len(data)-1): #趟数 min_index=i # 记录i趟开始最小的数的索引,我们从最左边开始 for j in range(i+1,len(data)): # 每一次趟需要循环的次数 if data[j] < data[min_index]: # 当数列中的某一个数比开始的数要小时候,更新最小值索引位置 min_index=j data[i],data[min_index]=data[min_index],data[i] # 一趟走完,交换最小值的位置,第一趟最小if __name__=='__main__': import random data_list=list(range(30)) random.shuffle(data_list) # 打乱列表数据 print("pre:",data_list) select_sort(data_list) print("after:",data_list)#结果:#pre: [20, 11, 22, 0, 18, 21, 14, 19, 7, 23, 27, 29, 24, 4, 17, 15, 5, 10, 26, 13, 25, 1, 8, 16, 3, 9, 2, 28, 12, 6]#after: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29]
插入排序
效率:O(n2)
原理:
-
以从小到大排序为例,元素0为第一个元素,插入排序是从元素1开始,尽可能插到前面。
-
插入时分插入位置和试探位置,元素i的初始插入位置为i,试探位置为i-1,在插入元素i时,依次与i-1,i-2······元素比较,如果被试探位置的元素比插入元素大,那么被试探元素后移一位,元素i插入位置前移1位,直到被试探元素小于插入元素或者插入元素位于第一位。
-
重复上述步骤,最后完成排序;
def insert_sort(data): """ 插入排序 :param data: 待排序的数据列表 :return: """ for i in range(1, len(data)): # 无序区域数据 tmp = data[i] # 第i次插入的基准数 for j in range(i, -1, -1): if tmp < data[j - 1]: # j为当前位置,试探j-1位置 data[j] = data[j - 1] # 移动当前位置 else: # 位置确定为j break data[j] = tmp # 将当前位置数还原if __name__=='__main__': import random data_list=list(range(30)) random.shuffle(data_list) # 打乱列表数据 print("pre:",data_list) insert_sort(data_list) print("after:",data_list)#结果:#pre: [7, 17, 10, 16, 23, 24, 13, 11, 2, 5, 15, 29, 27, 18, 4, 19, 1, 9, 3, 21, 0, 14, 12, 25, 22, 28, 20, 6, 26, 8]#after: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29]
快速排序
效率:平均O(nlogn)
原理:
-
从数列中随机挑选出一个数作为基数;
-
重新排列数列,使得比基数小的元素在左边,比基数大元素在右边,相等的元素放左边或者右边都可以,最后使得该基数在处于数列中间位置,这个称为分区操作;
-
递归上述操作,完成排序。
#!/usr/bin/env python3#_*_ coding:utf-8 _*_#Author:wddef quick_sort(data,left,right): """ 快速排序 :param data: 待排序的数据列表 :param left: 基准数左边元素的索引 :param right: 基准数右边元素的索引 :return: """ if left < right: mid = partition(data,left,right) # 分区操作,mid代表基数所在的索引 quick_sort(data,left,mid-1) # 对基准数前面进行排序 quick_sort(data,mid+1,right) # 对基准数后面进行排序def partition(data,left,right): tmp=data[left] # 随机选择的基准数,从最左边开始选 while left < right: while left < right and data[right] >= tmp: # 右边的数比基准数大 right-=1 # 保留该数,然后索引指针往左移动 data[left]=data[right] # 否则此时右边数比基数小,则将该数放到基准位置 while left < right and data[left] <= tmp: # 右边的数比基准数小 left+=1 # 此时保持该数位置不动,索引指针往前移动 data[right]=data[left] # 否则此时左边的数比基数大,则将该数放到右边 data[left] = tmp # 最后将基准数量放回中间 return left # 返回基准数位置if __name__=='__main__': data_list=[1,3,21,6,50,33,34,58,66] quick_sort(data_list,0,len(data_list)-1) print(data_list)###结果:[1, 3, 6, 21, 33, 34, 50, 58, 66]
堆排序
堆定义:本质是一个完全二叉树,如果根节点的值是所有节点的最小值称为小根堆,如果根节点的值是所有节点的最大值,称为大根堆。
效率:O(nlogn)
原理:
-
将待排序数据列表建立成堆结构(建立堆);
-
通过上浮(shift_up)或下沉(shift_down)等操作得到堆顶元素为最大元素(已大根堆为例);
-
去掉堆顶元素,将最后的一个元素放到堆顶,重新调整堆,再次使得堆顶元素为最大元素(相比第一次为第二大元素);
-
重复3操作,直到堆为空,最后完成排序;
def sift(data, low, high): """ 调整堆函数 :param data: 带排序的数据列表 :param low: 值较小的节点的位置,可以理解为是根节点 :param high:值较大的节点的位置 :return: """ i = low j = 2 * i # 父节点i所对应的左孩子 tmp = data[i] # 最较小节点的值 while j <= high: if j < high and data[j] < data[j + 1]: # 如果右孩子比左孩子大则把j指向右节点 j += 1 # 指向右节点 if tmp < data[j]: # 如果此时位置较小的节点值比该节点值小,则将该节点上浮最为新的父节点,并调整该节点双亲 data[i] = data[j] i = j # 调整该节点的双亲的位置 j = 2 * i else: break # 否则代表本次调整已经完成,并且节点i已经无值 data[i] = tmp # 最后将被调整节点的值放到i节点上(空出的位置)def heap_sort(data): """ 堆排序 :param data: 待排序的数据列表 :return: """ n = len(data) for i in range(n // 2 - 1, -1, -1): sift(data, i, n - 1) # 构建堆 for i in range(n - 1, -1, -1): # 调整过程,从最后一个元素开始交换 data[0], data[i] = data[i], data[0] # 交换 sift(data, 0, i - 1) # 开始调整if __name__ == '__main__': import random data_list = [1, 3, 21, 6, 50, 33, 34, 58, 66] random.shuffle(data_list) # 打乱列表数据 print("pre:", data_list) heap_sort(data_list) print("after:", data_list)#结果:#pre: [66, 3, 58, 34, 1, 33, 21, 6, 50]#after: [1, 3, 6, 21, 33, 34, 50, 58, 66]
归并排序
效率:O(nlogn)
空间复杂度:O(n)
原理:
-
申请空间,使其大小为两个已经排序序列之和,该空间用来存放合并后的序列;
-
设定两个指针,最初位置分别为两个已经排序序列的起始位置;
-
比较两个指针所指向的元素,选择相对小的元素放入到合并空间,并移动指针到下一位置;
-
重复步骤3直到某一指针达到序列尾;
-
将另一序列剩下的所有元素直接复制到合并序列尾。
def merge(data, low, mid, high): """ 合并函数 :param data: 数据列表 :param low: 列表开头位置 :param mid: 分割中间位置 :param high: 列表最后位置 :return: """ i = low # 第一个指针 j = mid + 1 # 第二个指针 tmp = [] # 临时存放的列表 while i <= mid and j <= high: # 分割的列表当两边都有数才进行 if data[i] < data[j]: tmp.append(data[i]) i += 1 # 低的指针往右移动 else: tmp.append(data[j]) # 右边大,存右边的数 j += 1 # 同时指针右移动 while i <= mid: # 左边分割有剩下 tmp.append(data[i]) i += 1 while j <= high: # 右边有剩下 tmp.append(data[j]) j += 1 data[low:high + 1] = tmp # 最后将tmp中的数写入到原来的列表中def merge_sort(data, low, high): """ 归并排序 :param data: 待排序的数据列表 :param low: 数据列表开始位置 :param high: 数据列表结束位置 :return: """ if low < high: # 至少有两个元素才进行 mid = (low + high) // 2 # 分割 merge_sort(data, low, mid) # 递归分割上一部分 merge_sort(data, mid + 1, high) # 递归分割下一部分 merge(data, low, mid, high) # 合并if __name__ == '__main__': import random data_list = [1, 3, 21, 6, 50, 33, 34, 58, 66] random.shuffle(data_list) # 打乱列表数据 print("pre:", data_list) merge_sort(data_list, 0, len(data_list) - 1) print("after:", data_list)#结果:#pre: [21, 3, 33, 58, 34, 66, 1, 6, 50]#after: [1, 3, 6, 21, 33, 34, 50, 58, 66]
希尔排序
效率:与增量有关,O(n1+£)其中<0£<1,如增量为2k-1 复杂度为O(n3/2)
原理:
-
先取一个小于n的整数d1作为第一个增量,把文件的全部记录分组。所有距离为d1的倍数的记录放在同一个组中。
-
先在各组内进行直接插入排序;
-
取第二个增量d2<d1重复上述的分组和排序,直至所取的增量 =1( < …<d2<d1),即所有记录放在同一组中进行直接插入排序为止。
def shell_sort(data): """ 希尔排序 :param data:待排序的数据列表 :return: """ d1 = len(data) // 2 # 设置分割大小为d1, while d1 > 0: for i in range(d1, len(data)): tmp = data[i] # 当前分割元素位置 j = i - d1 # 上一个分割元素位置 while j >= 0 and tmp < data[j]: # 上一个元素分割位置比当前分割位置要大,则需要调整位置 data[j + d1] = data[j] # 后移动当前分割元素位置 j -= d1 # 往前移d1 data[j + d1] = tmp d1 //= 2 # 继续分割if __name__ == '__main__': import random data_list = [1, 3, 21, 6, 50, 33, 34, 58, 66] random.shuffle(data_list) # 打乱列表数据 print("pre:", data_list) shell_sort(data_list) print("after:", data_list)#结果:#pre: [3, 66, 58, 34, 33, 50, 6, 21, 1]#after: [1, 3, 6, 21, 33, 34, 50, 58, 66]